Machine Learning Mastery (Integrated Theory+Practical HW)

Data Science is a multidisciplinary field that deals with the study of data. Data scientists have the ability to take data, understand it, process it, and extract information from it, visualize the information and communicate it. Data scientists are well-versed in multiple disciplines including mathematics, statistics, economics, business, and computer science, as well as the unique ability to ask interesting and challenging data questions based on formal or informal theory to spawn valuable and meticulous insights. This course introduces students to this rapidly growing field and equips them with its most fundamental principles, tools, and mindset.

Students will learn the theories, techniques, and tools they need to deal with various datasets. We will start with Regression, one of the basic models, and progress as we evaluate and assessing different models. We will start from the initial stages of data science and advance to higher levels where students can write their own algorithm from scratch to build a model. We will see end to end and work with practical datasets at the end of each module. Students will be issued with tutorials and explanation of all the exercises to help you learn faster and enable you to link theory using hands on exercises.

This course teaches advanced theory including some mathematics with practical exercises to promote deeper understanding.

Learning Outcomes

At the end of the course the students will:

  • Have an in-depth understanding of the concepts of Machine Learning
  • Be able to grasp, understand, and write machine learning code from scratch
  • Use Builtin Libraries available to build machine learning models
  • Be able to analyze, build, and assess models on any dataset
  • Be able to interpret and understand the black box behind model
  • Understand the applications of data science by exhibiting the ability to work on different datasets and interpreting them.

What is the working system of this course?

  • Strong concepts and theory linked to practical at the end of each module
  • Easy Lectures for those starting from scratch
  • Illustration and examples
  • Hands-on exercises with tutorials
  • Detailed explanations of how models work

What does this course cover?

  • Introduction to machine learning: Overview of supervised and unsupervised learning
  • Regression from scratch – Gradient Descent, Cost Function , Modelling
  • Using Machine learning builtin library
  • Feature Scaling
  • Multivariate Regression
  • Polynomial Regression
  • Over-fitting, Under-fitting and Generalization
  • Bias Variance Tradeoff
  • Cross Validation Strategy and Hyper-parameter tuning
  • Grid Search
  • Learning Curves
  • Decision Trees and introduction to other algorithms including neural network
  • Exercises after each module

After completing the course, you will have enough knowledge and confidence to code machine learning algorithms from scratch and to use built-in library. This course is for all interested in learning data science and machine learning, there is no such pre req. This course is different from other courses in a manner that it teaches to code algorithms and also exposes you to the mathematics behind machine learning, this even includes tutorials at the end of each module so that students can do side by side practice with the instructor. It exposes you to practical real world datasets to work on and get started with new problems.

Who this course is for:
  • Curious about Data Science
  • People wishing to learn Machine Learning from scratch
  • People of different domains – Business Analyst, Marketing, etc
  • Seeking job in the areas of machine learning

Screenshot Tutorials/Courses

Download Free Tutorial Machine Learning Mastery (Integrated Theory+Practical HW)


Password : freetuts.download

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button